
レジリエントな社会資本・物流

社会資本整備のあるべき将来

鹿島建設株式会社 田代民治

プロフィール

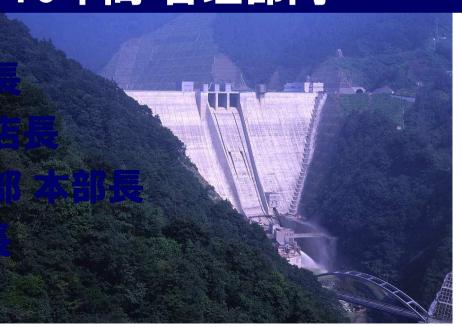
1974~ 川治ダム

1982~ 恵那山トンネル

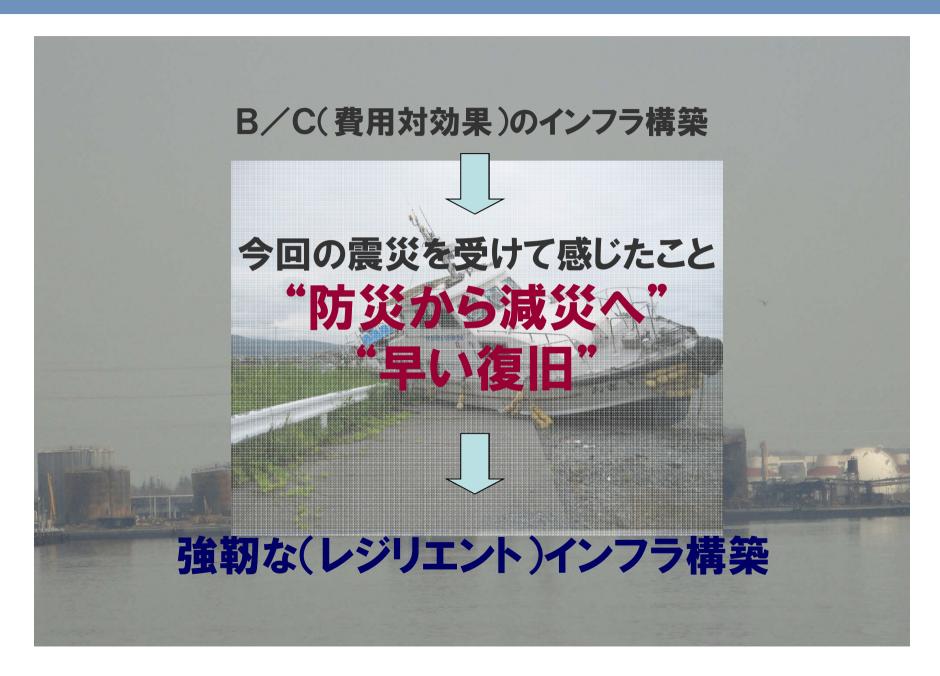
1985~ 厳木ダム

1987~ 宮ケ瀬ダム

1995~ 温井ダム


26年間 現場 / 10年間 管理部門

2000~ 東京支店 土木部島


2005~ 東京土木支店 支瓜

2007~ 本社 土木管理本語

2011~ 代表取締役副社員

人命を護る社会資本整備

人命を護る社会資本整備 ~三つの要素~

インフラの強靭性は、国土の安全・安心のために

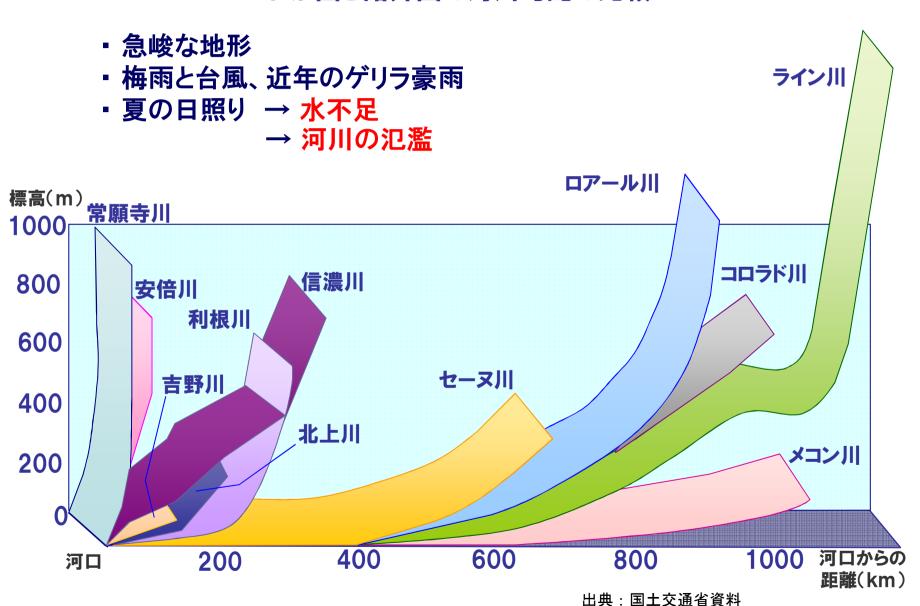
一端は土木技術者が担うべき役割

水

地震大国であるということ ~日本国土の条件~

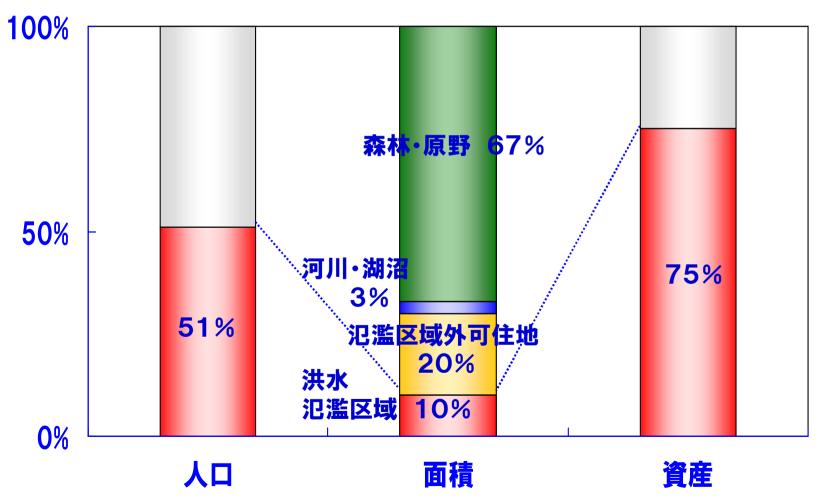
2011年3月11日 東日本大震災

貞山運河付近


死者:15,721人 行方不明者:4615人

(8月22日現在警察庁まとめ)

多賀城市


急峻な地形であるということ ~日本国土の条件~

わが国と諸外国の河川勾配の比較

国土の利用状況 ~日本国土の条件~

- 全人口の51%、資産の75%が 河川氾濫域(平野部)に集中
- 河川氾濫地域は、国土の約10%

数值出典:国土交通省資料

災害から学ぶ ~レジリエントな構造物~

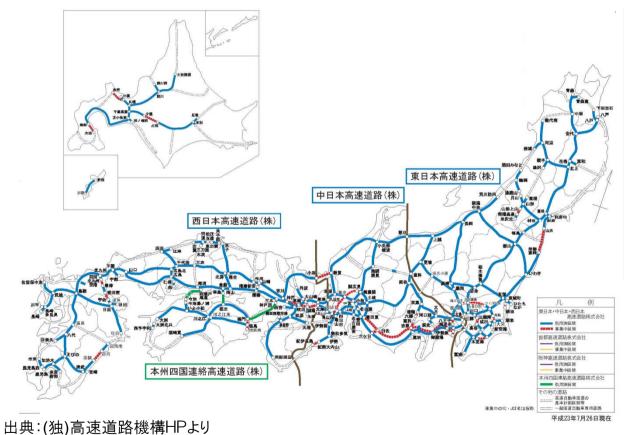
交通網

水

エネルギー

ループや代替の考え方

いかに強靭性を加えるか

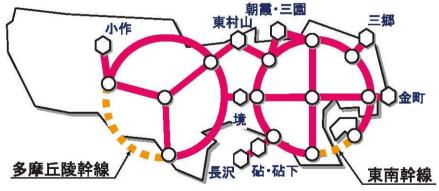

古い構造物のリニューアル

維持管理システムの重要性

ループや代替の考え方

交通網

日本の国土を結ぶ高速道路ネットワーク


出典:東京都「10年後の東京」への 実行プログラムより

ループや代替の考え方

水

効率的な水の運用・非常時のバックアップ機能の強化を図るために送水管ネットワークの構築を進めている。

出典:東京都水道局 水道経営プラン2007

いかに強靭性を加えるか

交通網

アルジェリアの高速道路 総延長1200km

モロツコからチュニジアの国境まで

いかに強靭性を加えるか

交通網

アルジェリアの高速道路

片側三車線

PROFIL EN TRAVERS PROJETÉ

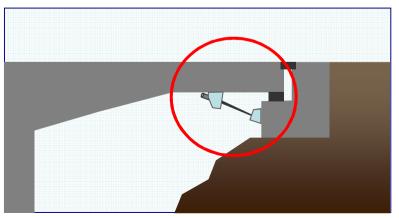
Bande d'arrêt Chaussée Terre-plein Chaussée Bande d'arrêt d'urgence 2 voies 2 voies d'urgence

d'assainissement

いかに強靭性を加えるか

水

災害のリスクを最小限に 被害の拡大を防ぐ遊水地



河川敷につくられた刈谷田川遊水地

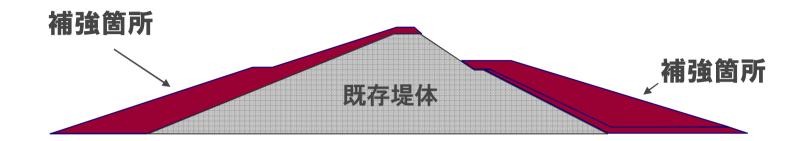
交通網

橋の落下を確実に防止する落橋防止装置

戦
前
の
施
工

	備考	フィルダム		コンクリートダム			
年 代		アース フィルダム	ロック フィルダム	重力式 ダム	アーチ ダム	バットレス ダム	
1603以前	古代~安土桃山時代	35					
1603~1867	江戸時代	319	8	800以上			
1868~1899	明治以降	49					
1900~1925	明治~大正時代	200		44	0	4	
1926~1945	昭和初期・戦前	215		105	1	3	
1946~1985	戦後•昭和	420	161	582	60	14	
1986以降	昭和~平成	81	121	266	3	1	
計		1319	282	997	64	22	
		2684					
*河川管理施設等構造令の規制を受ける堤高15m以上のダムを対象							

数値出典: (財) ダム協会 ダム年鑑2009


耐震補強による強度向上

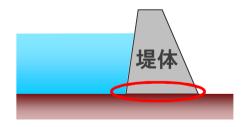
ダム直下まで進む宅地化

山口貯水池 耐震補強工事

完成後

山口貯水池 耐震補強工事

地下部の状況把握が不足

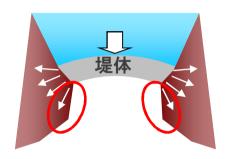


液状化による 地盤沈下と 構造物の隆起

構造物と基礎岩盤の接続部の施工

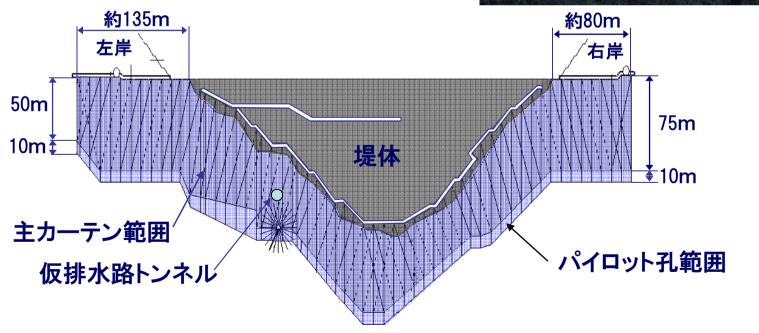
人力掘削

ダムが構築される基礎岩盤


堤体を造る基礎岩盤部を、丁寧に除去・清掃して健固な岩盤を露出させることで、ダムと岩盤の一体化を 図り強固なダムを造る

岩盤清掃

アーチダムの要 左右の岩盤補強


ショルダー部の処理

アーチダムは、堤体にかかる水圧を 両岸の基礎岩盤に分散する形式の ため、左右の岩盤を補強し、より強 固にしている

構造物と地盤の一体化・連続性

ダムは目に見えない地 下にもうひとつのダムを つくる・・・

